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The spin-diffusion constant D is obtained for a lattice of spin-} particles with dipole-dipole coupling.
The method of calculation is to create an equilibrium state with a nonuniform magnetization which is
then allowed to relax after removal of the small inhomogeneous applied magnetic field. Comparison of
the relaxation as calculated from a microscopic and macroscopic point of view defines D.

INTRODUCTION

There have been a number of calculations! for a lattice
of dipole-dipole coupled % spins of the spin-diffusion
constant which appears in the nuclear Bloch equation,

Mz(rq) =Dq(9°M ./374?), (1)

where 7, is defined as r-q/| ¢ |. The excuse for another
derivation of D, is that the previous derivations are
either quite complex and depend on approximations
whose validity is not easily assessed or based on order-
of-magnitude considerations. The linear response
method?® has been simply and successfully applied to
calculations of Dqy for an electron gas® so it seemed an
appropriate method for obtaining D, for spins on a
lattice. A straightforward application of the usual
method led to difficulties. Instead we use the linear
inhomogeneous field only to prepare our state. The
relaxation of our system from a macroscopic and micro-
scopic point of view will be shown to define D,.

CALCULATION

Using a macroscopic description one has for =0 the
magnetization

M.(0, rq) =M ,+M,(0) sing-r, (2)

which for £>0 we assume obeys the diffusion equation
M.(t, 7) = Dy(8*M ./0r¢). (3)

Substituting Eq. (2) for £>0 into Eq. (3) one obtains
M.(t) =M.(0) exp(—at), (4)

a=g®D,. (5)

From a microscopic point of view one has for t<0
()= Trlp(0), (6)

where p(0) is the density matrix for the inhomogeneous
equilibrium state

p(0)= exp[— (H+H")B]/Tr exp[ — (H+H")£],

(7
2

where!
H= — Wy Z I# Z B,‘j]f[jz
>
+ 2 3(4y) A +I7T5)
i>j
= Hy+H+H,, (8)
9

H'=—U?Y I;sinq-r;.

Substituting Eq. (7) into Eq. (6) and using the expan-
sion®

p(0)=[9— (H+H")B]/Tr9, (10)

valid for all usual laboratory situations, one obtains
{I#)=3[BI(I+1)J(wo+ U sing-r;).  (11)

Equation (11) is to be identified with the macroscopic
equation (2).
For t>0 one has

(I#)= TrI#=1Trp[H, I.7]=1 Trp[H,, 5], (12)
using the relations

p=ilp, H], (13)

H=H+H,, [H, 17]=0. (14)

By solving Eq. (13) with the boundary condition that
at (=0

p=p(0), (15)

we obtain
p(t) = exp(—iH?t)p(0) exp(iflt)
+i/texp[—i(l—il)ﬁj[p(t/), H,] exp[i(t—t')H ]t .
(16)

Equation (16) is then substituted into Eq. (12) to
obtain

(I#y=1i"Tr exp(—iH1t)p(0) exp(iH1)[H,, I.7]
+(0)? [ Tep(t—a0)(Ho, [Haw), ITH, (1)
0
where

Hy(u) = exp(iHu)H, exp(—iHu).
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The first term on the right-hand side can be shown to be
zero. In the second term of the right-hand side, which
is already of second order in H,, we substitute p(t—u),
correct to zero order in Hs. From Egs. (16) and (14)
this is seen to be

p(t—u)=p(0). (18)
Lowe and Gade! expand
[H21 [H2(u)7 I'Lz]] (19)

as their Eqs. (31)-(33). Substituting Eq. (18) and
Lowe and Gade’s Egs. (31)-(33) into Eq. (17) one
obtains

<j,’>=2(i)2(—ﬁ)U E Aal? (Sil’l(l'fr— Sin(l*l'k)

k(k71)

X f tEik(u)du[%l(IH)], (20)

where

Zz’k(%)= II [cos(Bij— By;) u].

J#ik

(21)

- 2Dq= 2(1)2<—-,3) U 2 A,kzF,k[%I(I-l-l)][Sin(]'l';— sinq-r,(]/{ —BU sinq-r,- [%I(I-l—l)]} .

e (ks%i)

Thus for long wavelengths one identifies

—r;) -q\2
> Au*Fa (—"—“‘(rk ) q),
k(k=1) lgl
which is equivalent to Lowe and Gade’s Eq. (61) for
D, evaluated to order Hs2. D, calculated to terms higher
order in H, can be obtained straightforwardly, but
laboriously, by solving Eq. (16) by iteration as a power
series in H,(?) and then substituting into Eq. (17) and
taking the limit #—eo. The author believes that Dy to
third order in H, found this way would agree in a
qualitative but not quantitative way with the results
obtained by Lowe and Gade.

In Egs. (1) and (3) we have avoided including the
spin-lattice relaxation-time interaction. This is not
necessary, but it does make the algebra simpler. In-
cluding the spin relaxation time 7 will only modify
our results by replacing Eq. (23) by

fc L(u) exp(—u/Ty)du
0

~1(x/A)2 exp(&)[1—®(e) ],

Dy= (26)

(27)
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The integral
/‘Z(u)du= [t exp[InL (x) Jdu
0 0

= fot exp
(22)

is in a form suitable for the method of steepest descent.®
One then obtains, assuming ! lies above the region
where L(u) is appreciable,

Fy= '/'t exp[an(u) ]
0

> In[cos(Bij—Bi)ul}du

J#(4,k)

= [7 explInT(0) + XL/ (0)/L() X
0

=3(r/Ax)"?,
where

(23)

Aw=3% X

53,k

Identifying Eq. (20) with the macroscopic M,
[Eq. (3)] one obtains

(Bij— Byj)® (24)

(25)

where

e= (4AT)L,
®() = (20172 f 7 dz.
0

For the usual spin system X1 and Eq. (29) will be
independent of T%.

CONCLUSION

We have obtained D, correct to second order in H,.
This is sufficient for systems whose time variation is
slight on the scale of T3, which is the order of the decay
time of L(u). The present results to this order agree
with Lowe and Gade.! The method also gives an un-
ambiguous prescription for obtaining D, to any order
in H,, and with a simple modification, the spin-lattice
dependence of Dy can also be included.
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