Modified Linear-Response Method for Obtaining the Spin-Diffusion Constant of a Rigid Dipole System*

J. I. KAPLAN

Columbus Laboratories, Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201 (Received 13 April 1970)

The spin-diffusion constant D is obtained for a lattice of spin- $\frac{1}{2}$ particles with dipole-dipole coupling. The method of calculation is to create an equilibrium state with a nonuniform magnetization which is then allowed to relax after removal of the small inhomogeneous applied magnetic field. Comparison of the relaxation as calculated from a microscopic and macroscopic point of view defines D.

INTRODUCTION

There have been a number of calculations¹ for a lattice of dipole-dipole coupled $\frac{1}{2}$ spins of the spin-diffusion constant which appears in the nuclear Bloch equation,

$$\dot{M}_z(r_{\rm q}) = D_{\rm q}(\partial^2 M_z/\partial r_{\rm q}^2), \tag{1}$$

where $r_{\mathbf{q}}$ is defined as $\mathbf{r} \cdot \mathbf{q} / |q|$. The excuse for another derivation of D_q is that the previous derivations are either quite complex and depend on approximations whose validity is not easily assessed or based on orderof-magnitude considerations. The linear response method² has been simply and successfully applied to calculations of $D_{\rm q}$ for an electron gas³ so it seemed an appropriate method for obtaining D_{q} for spins on a lattice. A straightforward application of the usual method led to difficulties. Instead we use the linear inhomogeneous field only to prepare our state. The relaxation of our system from a macroscopic and microscopic point of view will be shown to define D_{q} .

CALCULATION

Using a macroscopic description one has for t=0 the magnetization

$$M_z(0, r_q) = M_{z0} + \bar{M}_z(0) \sin \mathbf{q} \cdot \mathbf{r}, \qquad (2)$$

which for t>0 we assume obeys the diffusion equation

$$\dot{M}_z(t, r_{\rm q}) = D_q(\partial^2 M_z/\partial r_{\rm q}^2). \tag{3}$$

Substituting Eq. (2) for t>0 into Eq. (3) one obtains

$$\bar{M}_z(t) = \bar{M}_z(0) \exp(-\alpha t), \qquad (4)$$

$$\alpha = q^2 D_q. \tag{5}$$

From a microscopic point of view one has for t < 0

$$\langle I_i^z \rangle = \operatorname{Tr} I_i^z \rho(0),$$
 (6)

where $\rho(0)$ is the density matrix for the inhomogeneous equilibrium state

$$\rho(0) = \exp[-(H+H^{\scriptscriptstyle 1})\beta]/\mathrm{Tr}\,\exp[-(H+H^{\scriptscriptstyle 1})\beta],$$

$$H = -\omega_0 \sum I_i^z + \sum_{i>j} B_{ij} I_i^z I_j^z$$

$$+ \sum_{i>j} \frac{1}{2} (A_{ij}) (I_i^+ I_j^- + I_i^- I_j^+)$$

$$= H_0 + H_1 + H_2, \tag{8}$$

$$H^{1} = -U \sum_{i} I_{i}^{z} \sin \mathbf{q} \cdot \mathbf{r}_{i}. \tag{9}$$

Substituting Eq. (7) into Eq. (6) and using the expansion5

$$\rho(0) = \lceil \mathfrak{G} - (H + H^1)\beta \rceil / \text{Tr}\mathfrak{G}, \tag{10}$$

valid for all usual laboratory situations, one obtains

$$\langle I_i^z \rangle = \frac{1}{3} [\beta I(I+1)] (\omega_0 + U \sin \mathbf{q} \cdot \mathbf{r}_i).$$
 (11)

Equation (11) is to be identified with the macroscopic equation (2).

For t > 0 one has

$$\langle \dot{I}_i{}^z \rangle = \operatorname{Tr} I_i{}^z \dot{\rho} = i \operatorname{Tr} \rho \lceil H, I_i{}^z \rceil = i \operatorname{Tr} \rho \lceil H_2, I_i{}^z \rceil, \quad (12)$$

using the relations

$$\dot{\rho} = i[\rho, H], \tag{13}$$

$$\widetilde{H} = H_0 + H_1, \qquad [\widetilde{H}, I_i^z] = 0.$$
 (14)

By solving Eq. (13) with the boundary condition that at t = 0

$$\rho = \rho(0), \tag{15}$$

we obtain

$$\rho(t) = \exp(-i\tilde{H}t)\rho(0) \exp(i\tilde{H}t)$$

$$+i\int_{0}^{t} \exp[-i(t-t')\tilde{H}][\rho(t'), H_{2}] \exp[i(t-t')\tilde{H}]dt'.$$
(16)

Equation (16) is then substituted into Eq. (12) to

 $\langle \dot{I}_{i}^{z} \rangle = i \operatorname{Tr} \exp(-i\tilde{H}t) \rho(0) \exp(i\tilde{H}t) \Gamma H_{2}, I_{i}^{z}$

$$+(i)^{2}\int_{0}^{t} \operatorname{Tr}\rho(t-u)[H_{2}, [H_{2}(u), I_{i}^{z}]]du, \quad (17)$$

where

$$H_2(u) = \exp(i\tilde{H}u)H_2\exp(-i\tilde{H}u).$$

4578

(7)

2

The first term on the right-hand side can be shown to be zero. In the second term of the right-hand side, which is already of second order in H_2 , we substitute $\rho(t-u)$, correct to zero order in H_2 . From Eqs. (16) and (14) this is seen to be

$$\rho(t-u) = \rho(0). \tag{18}$$

Lowe and Gade¹ expand

$$[H_2, [H_2(u), I_i^z]]$$
 (19)

as their Eqs. (31)-(33). Substituting Eq. (18) and Lowe and Gade's Eqs. (31)-(33) into Eq. (17) one

$$\langle \dot{I}_{i^z} \rangle = 2(i)^2 (-\beta) U \sum_{k(k \neq i)} A_{ik^2} \left(\sin \mathbf{q} \cdot \mathbf{r}_i - \sin \mathbf{q} \cdot \mathbf{r}_k \right)$$

$$\times \int_0^t \tilde{L}_{ik}(u) du \left[\frac{1}{3}I(I+1)\right], \quad (20)$$

where

$$\tilde{L}_{ik}(u) = \prod_{j \neq i, k} \left[\cos(B_{ij} - B_{kj}) u \right]. \tag{21}$$

The integral

$$\int_{0}^{t} \widetilde{L}(u) du = \int_{0}^{t} \exp[\ln \widetilde{L}(u)] du$$

$$= \int_{0}^{t} \exp\{ \sum_{j \neq (i,k)} \ln[\cos(B_{ij} - B_{kj}) u] \} du$$
(22)

is in a form suitable for the method of steepest descent.6 One then obtains, assuming t lies above the region where L(u) is appreciable,

$$F_{ik} = \int_0^t \exp[\ln \tilde{L}(u)]$$

$$\simeq \int_0^\infty \exp\{\ln \tilde{L}(0) + \frac{1}{2} X^2 [\tilde{L}''(0)/\tilde{L}(0)]\} dX$$

$$= \frac{1}{2} (\pi/\Delta_{ik})^{1/2}, \qquad (23)$$

where

$$\Delta_{ik} = \frac{1}{2} \sum_{i \neq (i,k)} (B_{ij} - B_{kj})^2. \tag{24}$$

Identifying Eq. (20) with the macroscopic \dot{M}_z [Eq. (3)] one obtains

$$-q^{2}D_{\mathbf{q}} = 2(i)^{2}(-\beta)U\sum_{k(k\neq i)}A_{ik}^{2}F_{ik}\left[\frac{1}{3}I(I+1)\right]\left[\sin\mathbf{q}\cdot\mathbf{r}_{i} - \sin\mathbf{q}\cdot\mathbf{r}_{k}\right]/\left\{-\beta U\sin\mathbf{q}\cdot\mathbf{r}_{i}\left[\frac{1}{3}I(I+1)\right]\right\}. \tag{25}$$

Thus for long wavelengths one identifies

$$D_{\mathbf{q}} = \sum_{k:k=i} A_{ik}^{2} F_{ik} \left(\frac{(\mathbf{r}_{k} - \mathbf{r}_{i}) \cdot \mathbf{q}}{|q|} \right)^{2}, \tag{26}$$

which is equivalent to Lowe and Gade's Eq. (61) for $D_{\rm q}$ evaluated to order H_2^2 . $D_{\rm q}$ calculated to terms higher order in H_2 can be obtained straightforwardly, but laboriously, by solving Eq. (16) by iteration as a power series in $H_2(t)$ and then substituting into Eq. (17) and taking the limit $t\rightarrow\infty$. The author believes that D_q to third order in H_2 found this way would agree in a qualitative but not quantitative way with the results obtained by Lowe and Gade.

In Eqs. (1) and (3) we have avoided including the spin-lattice relaxation-time interaction. This is not necessary, but it does make the algebra simpler. Including the spin relaxation time T_1 will only modify our results by replacing Eq. (23) by

$$\int_{0}^{t} \widetilde{L}(u) \exp(-u/T_{1}) du$$

$$\simeq \frac{1}{2} (\pi/\Delta)^{1/2} \exp(\epsilon^{2}) [1 - \Phi(\epsilon)], \quad (27)$$

$$\epsilon^2 = (4\Delta T_1^2)^{-1}$$

$$\Phi(\epsilon) = (2\pi^{1/2}) \int_0^{\epsilon} e^{-Z^2} dZ.$$

For the usual spin system $\epsilon \ll 1$ and Eq. (29) will be independent of T_1 .

CONCLUSION

We have obtained D_{q} correct to second order in H_{2} . This is sufficient for systems whose time variation is slight on the scale of T_2 , which is the order of the decay time of $\bar{L}(u)$. The present results to this order agree with Lowe and Gade.1 The method also gives an unambiguous prescription for obtaining D_{q} to any order in H_2 , and with a simple modification, the spin-lattice dependence of D_{q} can also be included.

where

^{*} Work supported by the Office of Naval Research, under Contract No. N00014-69-C-0218. Part of work was done during the summer 1969 at the Aspen Center of Physics, Aspen, Colo. ¹ N. Bloembergen, Physica 15, 386 (1949); A. G. Redfield, Phys. Rev. 116, 315 (1959); L. L. Buishvili and D. N. Zubarev, Fiz. Tverd. Tela 7, 722 (1965) [Soviet Phys. Solid State 7, 580 (1965)]; I. J. Lowe and S. Gade, Phys. Rev. 156, 817 (1967); P. Borckmans and D. Walgraef, *ibid.* 167, 282 (1968). ² H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

³ J. I. Kaplan, Phys. Rev. **143**, 351 (1966); G. D. Gaspari, *ibid*. **151**, 215 (1966); P. M. Platzman and P. A. Wolff, *ibid*. **18**,

<sup>280 (1967).

&</sup>lt;sup>4</sup> C. P. Slichter, *Principles of Magnetic Resonance* (Harper and Row, New York, 1963), p. 46.

⁵ Reference 4, Appendix E.

⁶ J. Mathews and J. L. Walker, *Mathematical Methods of Physics* (Benjamin, New York, 1964), p. 78.